
 

Supplementary Fig. 1 Miami plot of brain shape in left (top) and right (bottom) 

hemispheres in the UK Biobank. Global-to-local segmentation and CCA-based GWAS was 

performed independently within each hemisphere, but using data from the same individuals in 

UKBB. For each SNP, the aggregated p-values across all left (n=241) or right (n=201) 

hemisphere segments are plotted. 

  



 
Supplementary Fig. 2 Total number of segments obtained after global-to-local 

segmentation with the indicated number of hierarchical levels. Note the large numbers of 

additional segments passing the 1% vertex cutoff contributed up to the ninth hierarchical level 

(the maximum used in this study), after which relatively few new segments are contributed. 



 

Supplementary Fig. 3 Overlap of global-to-local segmentation of brain shape with 

commonly used brain atlases. Left, heatmaps of percentages of each brain atlas region (y-axis) 

overlapping with global-to-local hierarchical brain segments in this study (x-axis). Right, 

heatmap of percentages of each by global-to-local hierarchical brain segments in this study (x-

axis) overlapping with indicated brain atlas regions (y-axis).  
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Supplementary Fig. 4 Number of independent genome-wide significant associations 

discovered by hierarchical segments. Among segments of each hierarchical level (indicated by 

lower-case Roman numerals and corresponding to concentric circles in the polar dendrogram), 

the number of independent genome-wide significant associations is shown. 



 

 

Supplementary Fig. 5 Regional associations of genome-wide significant loci for brain shape 

stratified by shared effects on facial shape. For the indicated sets of genome-wide significant 

brain shape loci, the number of associations with each brain segment (shown at hierarchical 

levels iv-vi) was plotted. The top and bottom 57 face-shared or brain-specific loci were chosen as 

57 is the number of brain shape loci which have at least suggestive (P < 5x10-7) association with 

face shape. Right-tailed, one-sided P-values were computed based on canonical correlation 

analysis (CCA) chi-squared statistics; exact p-values are available in Supplementary Table 2. 

  



 

Supplementary Fig. 6 Partitioned heritability enrichments in craniofacial cell-types and 

brain organoids for brain shape within hierarchical segments. For each segment at the 

indicated hierarchical level, scaled S-LDSC Z-scores from all craniofacial (a) or brain organoid 

(b) annotations as indicated in Figure 4 were averaged, and the difference in mean Z-score 

between the two averages (c) was also computed.  

  



Supplementary Note: Further details on Methods  

UK Biobank data processing 

Further details on the four-step procedure for processing raw MRI data are provided below: 

Second step: high dimensional cortical meshes were downsampled to lower resolution meshes of 

32,492 3D vertices (average ~2mm spacing) and 64,980 triangular faces. Left and right 

hemispheres were aligned. All but one of the images were processed without error in this step. 

Third step: the vertices from the sub-cortical part of the surface were removed based on the sub-

cortical vertex index provided by the Conte69 atlas. This yielded 29,759 vertices for each of the 

mid-cortical left and right surfaces. For each hemisphere and each individual, we also computed 

the centroid size as the average Euclidean distance of all mesh vertices to the point of gravity. In 

the remainder of this work, we refer to the mid-cortical surface as “brain shape.” Fourth step: We 

first measured the Mahalanobis distance for each individual’s mid-cortical surface to the overall 

average mid-cortical surface in a generalized Procrustes shape-space spanned by principal 

components that captures 98% of the total variation. From the Mahalanobis distance distribution, 

a z-score for each mid-cortical surface was established, and each mid-cortical surface with  z-score 

> 3 was manually inspected for meshing errors (e.g. triangles stretched too far or triangles folded). 

Filtering of UKB SNPs and individuals was performed as follows. First, European individuals 

were selected using principal component analysis (PCA) after excluding SNPs in linkage 

disequilibrium (LD) from the 1000G Phase 3 dataset (Plink 1.9, 50 variant window-size, 5 

variant step size, 0.2 r2). A k-nearest neighbor algorithm, using the first 25 reference ancestry 

principal components, was used to assign a 1000G super population label to each individual, and 

individuals with the 1000G super population EURO label were selected for analysis only. 

Second, we filtered imputed UKB SNPs by removing indels and multi-allelic SNPs, missing 



genotypes across individuals (< 50%), minor allele frequency (<1%), and Hardy-Weinberg 

equilibrium (p < 1e-6). Third, to remove related individuals and capture population structure we 

pruned the filtered SNP set for LD (Plink 1.9, 50 variant window-size, 5 variant step size, 0.2 r2). 

Related individuals were removed when the proportion of identity by descent (IBD) was higher 

than 0.125. 

For each of the covariate variables, except for assessment center, missing data was replaced by 

the average value of the respective variables. 26 subjects were removed due to extreme outlier 

covariates (>6 times the standard deviation) in weight (11 individuals), diastolic blood pressure 

(1 individual), systolic blood pressure (3 individuals), X-position of brain mask (6 individuals), 

Y-position of brain mask (4 individuals), Z-position of table/coil (1 individual). 

 

 

ABCD study data preprocessing 

Variants with missing rate greater than 10% as well as individuals with more than 10% of missing 

variants were excluded from phasing and imputation. 

To assess ancestry, pre-phased QCed genotyped variants were filtered for Hardy-Weinberg 

Equilibrium (P < 1 x 10-6) and merged with the 1000 Genomes Phase 3 and the Human Genome 

Diversity Project reference panels. Variants in common between the datasets were pruned using a 

1,500 kb window, 50 bp step size, and a 0.4 r2 threshold. This pruned dataset, which contained 

14,068 individuals both reference and ABCD datasets, was used subjected to PCA to construct an 

ancestry space. Using the eigenvalues that explained more than 5% of the total variance, an X-

dimensional centroid was created from reference samples designated as having European ancestry. 

This created a “European centroid.” Only participants that were within 3 standard deviations of 



the centroid were retained. These steps resulted in 5,622 individuals and 484,000 variants. 

Following phasing and imputation, only variants with INFO score > 0.7 wer retained, resulting in 

15.3M imputed ABCD variants.  

For the 5,622 individuals of primarily European ancestries, the genotyped and imputed variants 

were filtered by removing indels and multi-allelic SNPs, missing genotypes across individuals 

(<50%), minor allele frequency (<1%), and Hardy-Weinberg equilibrium (p < 1e-6). In order to 

remove related individuals and capture population structure we pruned the filtered genotyped SNP 

set (Plink 1.9, 50 variant window-size, 5 variant step size, 0.2 r2). Subsequently, 1,009 related 

individuals were removed when the proportion of identity by descent (IBD) was higher than 0.125. 

Finally, population structure was captured using PCA. Of the 4,613 unrelated subjects of European 

ancestries, 143 did not have a preprocessed brain image.  

 

Global-to-local (G2L) segmentation of the mid-cortical surface 

For each of the 285 brain segments, the set of surface vertices were subjected to a new GPA, such 

that a multivariate shape-space for each brain segment was constructed independently of the other 

segments. After GPA, each segment’s shape-space was spanned by a multivariate orthogonal basis 

using PCA on the pooled x, y and z coordinates of the collection of superimposed vertices. Finally, 

we retained enough PCs to explain up to 80% of the total shape variation within each segment. 

This is in slight contrast to our previous work on facial shape, where we used parallel analysis 

(PA) instead. By choosing those PCs explaining up to 80% of the variation we typically retained 

50% of the components otherwise retained using PA (e.g. 437 instead of ~1000 for the full 

hemisphere). However, the number of components retained using PA became computationally 



intractable. Therefore, we opted to further reduce the number of PCs per brain segment, knowing 

that these certainly represent non-noisy shape variations, confirmed by PA.    

 

Overlap of brain atlases with G2L segmentation 

For each of the G2L levels separately, every brain surface vertex has a unique label of the G2L 

brain segment it belongs to at that level and a unique label of the atlas brain region it belongs to. 

Using these two labels, the normalized mutual information across all vertices provided a measure 

of overlap from 0 (no overlap) to 1 (complete overlap), for each G2L level with each of the three 

atlases. Additionally, each brain segment and each brain region defined a subset of vertices, and 

therefore, for each segment we defined the intersection of vertices with each brain region, and 

for each brain region we defined the intersection of vertices with each brain segment, expressed 

as percentages.   

 

G2L multivariate genome-wide discovery 

For each brain segment separately, canonical correlation analysis (CCA, canoncorr from Matlab 

2019b), was used as a multivariate testing framework. CCA extracts the linear combination of PCs 

spanning the brain segment that correlates maximally with the SNP variant being tested, and 

therefore reveals a latent shape trait within the shape-space of the brain segment. The correlation 

of this latent shape trait with the SNP variant is tested for significance based on a c2 statistic (right-

tail, one-sided test), with degrees of freedom equal to the dimensionality or number of principal 

components of the brain segment. Using CCA, we tested each SNP (n=9,705,931) individually 

under an additive genetic model in UKB (n=19,670) against each of the brain segments separately. 

Note that CCA does not adjust for covariates, but covariate adjustment was performed using PLSR 



at the phenotyping stage. Additionally, we applied a similar correction for the covariates on each 

SNP, again using PLSR, excluding the covariates that were only relevant for the correction of 

imaging data (e.g. acquisition center).  

The permutation procedure for determining the empirical number of GWAS was performed as 

follows. First, for a single SNP we randomly permuted the genotypes in UKB, essentially 

creating genotypes that have a noisy association with multivariate brain shape. Then, we 

performed the CCA associations of the randomized genotypes to each of the 285 brain segments 

and retained the lowest or “best” p-value out of the 285 p-values obtained. Step 1 and 2, were 

repeated 10,000 times. Subsequently, we divided 0.05 by the 5th percentile of the 10,000 

permuted best CCA p-values, and this was done for each of the 472 SNPs. Based on these 472 

outcomes, the mean number of empirical independent tests is 241.46 (11.09 standard deviation). 

We opted for this more conservative empirical estimation, and determined the study-wide 

significance threshold to be 2.0707 x 10-10 (i.e., 5 x 10-8 / 241.46).   

 

Peak detection, overlap and annotations 

Clumping of 38,630 genome-wide and 23,413 study-wide significant brain shape SNPs was 

performed as follows. First, starting with the best-associated or lead SNP (lowest p-value), SNPs 

within 10kb or within 1Mb but with r2 > 0.01 were clumped into the same locus represented by 

the lead SNP. This process was repeated until all SNPs were assigned into 509 loci. Second, 

based on the lead SNPs only, a wider window of +/- 10Mb was tested for r2 > 0.01, reducing the 

number of loci (n=502) by merging seven lead SNPs. Third, any locus with a singleton lead SNP 

below the study-wide threshold was removed (n=30). r2 values were computed using UK 

Biobank genotypes. 



 

ABCD replication testing 

Replication was tested using a standard univariate linear regression (two-sided, regstats Matlab 

2019b). This was done for each of the 466 lead SNPs for which the exact SNP or a proxy SNP 

(within 10kb or within 1Mb and r2 > 0.2) was available for analysis in the ABCD cohort, and in 

each of the 285 segments that were associated at P < 5 x 10-8, resulting in 3,586 replication tests. 

From all replication tests combined (n=3,586), we computed a 5% FDR-adjusted significance 

threshold117 equal to P < 0.0369. 

 

Clinical gene-panel overlap 
 
We calculated the overlap between genes from clinical panels/subcategories/categories and 

different gene-sets allowing for a 200kb, 500kb or 1Mb window around the loci. Significance 

was tested by generating 10,000 random panels for each clinical panel subcategory/category with 

equal size using a list of 19,198 protein-coding genes. P-values were obtained by dividing “the 

number of times the overlap random panel and gene-set was larger than the overlap clinical 

gene-panel/subcategory/category and gene-set” and “number of random gene-panels created 

(10,000)”. Clinical panels/subcategories/categories were interpreted as strongly or weakly 

enriched if they showed significance (P < 0.05) across three or two different gene-sets 

respectively. 

 



Supplementary Note: LD Score Regression for
Multivariate Traits

Jeffrey P. Spence

1 Main Theoretical Results
In this note, we show that LDscore regression [1] may be used on the results of GWAS on mul-
tivariate traits, albeit with a slight difference in interpretation. In the following we consider a D
dimensional trait measured in a sample of N individuals and assume that there are P SNPs. We
consider the standard additive model of phenotypes

Y = XB + E (1)

where Y ∈ RN×D is the matrix of phenotypes; X ∈ RN×P is the standardized genotype ma-
trix; B ∈ RP×D is the matrix of effect sizes, with Bpd representing the effect of SNP p on the
dth dimension of the trait; and E ∈ RN×D is the residual matrix, representing environmental or
measurement noise. For notational convenience, we will use xj to represent the j th column of the
genotype matrix (i.e., the standardized genotypes of the N individuals at SNP j).

The goal of this analysis is to use the p-values reported by a multivariate GWAS to learn some-
thing about the heritability of the trait. Before beginning, however, we note that for a univariate
trait, under a purely additive model, heritability is defined as the proportion of phenotypic variance,
σ2
P attributable to genetic variation σ2

G. In the multivariate trait case, an appropriate definition is
less clear because phenotypic variance is now represented by a D × D covariance matrix, ΣP ,
and there is no single analogue of the proportion of variance explained by the genetic covariance
matrix, ΣG. The generalization that we will use is 1

D
trace(ΣGΣ−1P ), which reduces to the clas-

sical definition in the univariate case, and because ΣG � ΣP , von Neumann’s trace inequality
shows that this number is bounded between 0 and 1, with the upper extreme being reached only
when ΣG = ΣP . In some sense, this can be thought of as a coordinate system-free “average her-
itability” across the D dimensions of the trait. Indeed, if either ΣG or ΣP are diagonal (i.e., the
coordinates are either genetically uncorrelated or phenotypically uncorrelated respectively) then
1
D

trace(ΣGΣ−1P ) is exactly the average of the univariate heritabilities of each dimension. Further-
more, this definition of heritability is invariant to scaling the dimensions of the trait, for example
by changing units of measurement. In Section 2 we show that this generalization of heritability is,
in fact, the only definition of heritability that satisfies all of these properties.

In order to make analytical progress, we introduce some assumptions. We assume N is large,
and so we neglect terms of order O( 1

N
) that are induced by standardizing Y and X. Like in the

original derivation of LDscore regression [1] we assume that X, B, and E are all independent

1



random variables with the following moment conditions

E[X] = 0N×P

E[B] = 0P×D

E[E] = 0N×D

E[XijXik] = rjk

Var[(Bj1, . . . ,BjD)] =
1

P


h21 ρ12 · · · ρ1D
ρ12 h22

... . . .
ρ1D h2D



Var[(Ei1, . . . ,EiD)] =


1− h21 ε12 · · · ε1D
ε12 1− h22
... . . .
ε1D 1− h2D


and we assume that the effect sizes at different SNPs are uncorrelated, and that the errors across
individuals are uncorrelated (but violations of this assumption are discussed below). We make the
further assumption that YTY = NID. This assumption says that the multivariate trait is defined
such that the dimensions are uncorrelated in the sample, and that each dimension is standardized to
have mean zero and unit variance. In Section 1.2 we relax this assumption to allow for dependent
columns. We also assume that hypothesis testing is performed using the following test statistic for
SNP j, with estimated effect sizes at that SNP, b̂Tj := 1

N
xTj Y:

χ2
j = N2b̂Tj

[
(Y − xjb̂

T
j )T (Y − xjb̂

T
j )
]−1

b̂j, (2)

which, under our assumption of YTY = NID, we show that this statistic reduces to

χ2
j =

N ||b̂j||22
1− ||b̂j||22

and in the univariate case is

χ2
j =

Nβ̂2
j

1− β̂2
j

.

This assumption is mostly for convenience – in Section 1.3 we show that this is essentially
equivalent to Wilks’ Lambda, the default test statistic in many software packages [6]. For large
N and N � D, the χ2

j statistic is approximately χ2 distributed with D degrees of freedom. As a
result, a p-value, p, from a GWAS may be transformed into the χ2

j statistic by taking the pth upper
quantile of the χ2 distribution with D degrees of freedom.

We note that this statistic is defined differently from that in the original LDscore regression
papers [1, 4] even in the case of a univariate trait, where they use

χ2
LDSC = Nβ̂2

j .

2



The statistic in Equation 2 matches what is used in standard regression packages, whereas
the statistic in the LDscore regression papers does not. When converting p-values to χ2 statistics
for LDscore regression, care should be taken that the result is the formula in Equation 2, not the
statistic used in LDscore regression as defined in [1].

To avoid this confusion, we define the χ2
j statistic as would be produced by any standard re-

gression package, and then frame our results in terms of this statistic.

Theorem 1. Let the LD Score of SNP j be defined as

`j :=
P∑
k=1

r2jk.

Then, with the assumptions described above, we have

E

 χ2
j

D
(

1 +
χ2
j

N

)
 =

N − 1

P

(∑D
d=1 h

2
d

D

)
`j + 1 +O

(
1

N

)
. (3)

Proof. First, note that under the assumption that YTY = NI we have

χ2
j = N2b̂Tj

[
(Y − xjb̂

T
j )T (Y − xjb̂

T
j )
]−1

b̂j

= N2b̂Tj

[
YTY −YTxjb̂

T
j − b̂jx

T
j Y + b̂jx

T
j xjb̂

T
j

]−1
b̂j

= N2b̂Tj

[
NID −N b̂jb̂

T
j

]−1
b̂j

=
N ||b̂j||22

1− ||b̂j||22

where the third equality follows from the definition of b̂j , and the final equality follows from the
Sherman-Morrison formula.

This then directly implies that

χ2
j

D(1 +
χ2
j

N
)

=
N

D
||b̂j||22.

We therefore seek to compute the expected value of ||b̂j||22, with

E
[
||b̂j||22

]
= E

[
b̂Tj b̂j

]
=

1

N2
E
[
xTj YYTxj

]
=

1

N2
E
[
xTj (XB + E) (XB + E)T xj

]
=

1

N2

(
E
[
xTj XBBTXTxj

]
+ E

[
xTj XBETxj

]
+ E

[
xTj EBTXTxj

]
+ E

[
xTj EETxj

] )
.

3



But, by the independence of B, E and X and the moment condition E[E] = 0N×D we have

E
[
xTj XBETxj

]
= E

[
xTj EBTXTxj

]
= 0.

Hence,

E
[
||b̂j||22

]
=

1

N2

(
E
[
xTj XBBTXTxj

]
+ E

[
xTj EETxj

] )
.

Tackling the first term on the right hand side, we have

E
[
xTj XBBTXTxj

]
= EE

[
xTj XBBTXTxj

∣∣X]
= E

[
xTj XE

[
BBT

∣∣X]XTxj
]

= E
[
xTj XE

[
BBT

]
XTxj

]
=

1

P

(
D∑
d=1

h2d

)
E
[
xTj XXTxj

]
=
N2

P

(
D∑
d=1

h2d

)(
`j +

P − `j
N

)
+O(1)

where we used that E[BBT ]jj′ =
∑D

d=1 EBjdBj′d =
∑D

d=1

h2d
P

if j = j′ and 0 otherwise by the fact
that effect sizes at different loci are uncorrelated and that E[xTj XXTxj] = N2(`j +

P−`j
N

) + O(1)
which was shown in [1].

Meanwhile,

E
[
xTj EETxj

]
= EE

[
xTj EETxj

∣∣∣X]
= E

[
xTj E

[
EET

∣∣∣X]xj

]
= E

[
xTj E

[
EET

]
xj
]

=

(
D∑
d=1

1− h2d

)
E
[
xTj xj

]
= N

(
D∑
d=1

1− h2d

)
where we used similar calculations to tackle E[EET ] as we did to tackle E[BBT ], relying on the
noise being uncorrelated across individuals.

Combining these results, we see

E
[
||b̂j||22

]
=

1

P

(
D∑
d=1

h2d

)(
1− 1

N

)
`j +

D

N
+O

(
1

N2

)
,

which, after multiplying by N and dividing by D, implies

E

 χ2
j

D
(

1 +
χ2
j

N

)
 =

N − 1

P

(∑D
d=1 h

2
d

D

)
`j + 1 +O

(
1

N

)
.

4



The practical implication of this theorem is that by regressing LD scores against the trans-
formed χ2

j statistics from a multivariate GWAS, we are able to infer the average of the heritabilities
of the dimensions of the trait.

It is clear from the proof that the assumption that errors are uncorrelated across individuals
is not strictly necessary: like LDscore regression, violations of this assumption would result in
changes to the intercept term, but not to the slope. As such, test statistic inflation due to effects
such as population structure will get captured by the intercept term without biasing the slope.

1.1 Partitioning average heritability
While Theorem 1 assumes an infinitesimal model where each variant contributes equally to the
average heritability, in reality there is reason to believe that SNPs with certain characteristics or
SNPs in some regions of the genome may contribute more to heritability. For instance, SNPs that
lie in open chromatin in relevant cell types might be expected to contribute more to heritability. In
general, we may annotate each SNP as belonging to different categories, and we can then infer the
average contribution to heritability of each distinct annotation, which may highlight which regions
of the genome are important for the trait. These ideas were originally pioneered in the single
dimension trait case in [4], and we extend those results to our present multidimensional trait case
here.

To formalize this model, we partition the P SNPs into non-overlapping annotations, and we
call this partitioning C. Let P (c) denote the number of SNPs in partition c, so that

∑
c∈C P (c) = P .

We maintain the same moment conditions as before, except now we have that for each annotation
c ∈ C, for each SNP j ∈ c,

Var [(Bj1, . . . ,BjD)] =
1

P (c)


h21(c) ρ12(c) · · · ρ1D(c)
ρ12(c) h22(c)

... . . .
ρ1D(c) h2D(c)

 ,

and we define the the heritability of a dimension as the sum of the heritabilities contributed from
each annotation:

h2d :=
∑
c∈C

h2d(c).

That is, we allow the distribution of effect sizes for SNPs in each annotation to have an arbitrary
variance-covariance matrix determined by that annotation.

With this generalization of the assumptions of Theorem 1 we obtain the following generaliza-
tion.

Theorem 2. Under the assumptions listed above, and letting the annotation-specific LD score of
SNP j and annotation c ∈ C be defined as

`(j, c) :=
∑
k∈c

r2jk

5



we have

E

 χ2
j

D
(

1 +
χ2
j

N

)
 = (N − 1)

[∑
c∈C

`(j, c)

P (c)
×
∑D

d=1 h
2
d(c)

D

]
+ 1 +O

(
1

N

)
. (4)

Proof. From the proof of Theorem 1, we have that

E

 χ2
j

D
(

1 +
χ2
j

N

)
 =

N

D
||b̂j||22

and
||b̂j||22 =

1

N2

(
E
[
xTj XBBTXTxj

]
+ E

[
xTj EETxj

] )
.

The first term on the right hand side will need to be recalculated because of the different moment
condition on B, but the second term remains unchanged. To begin, note that E

[
BBT

]
jj′

= 0 if
j 6= j′ by the independence of sites and the fact that B has mean zero. For the diagonal terms,

E
[
BBT

]
jj

=
D∑
d=1

EB2
jd

=
1

P (c(j))

D∑
d=1

h2d(c(j)),

where we wrote c(j) for the partition that contains SNP j.
Then, using the independence of B and X, and defining r̂jk := xTj xk/N we obtain

E
[
xTj XBBTXTxj

]
= E

[
xTj XE

[
BBT

]
XTxj

]
= N2

∑
c∈C

∑D
d=1 h

2
d(c)

P (c)

∑
k∈c

Er̂2jk

= N2

[∑
c∈C

(
`(j, c) +

P (c)− `(j, c)
N

)∑D
d=1 h

2
d(c)

P (c)

]
+O(1)

= (N2 −N)

(∑
c∈C

`(j, c)

P (c)

D∑
d=1

h2d(c)

)
+N

(
D∑
d=1

h2d

)
+O(1),

where the third equality follows from the fact that Er̂2jk = r2jk + (1 − r2jk)/N + O(1/N2), which
was proved in [1].

Recall that

E
[
xTj EETxj

]
= N

(
D∑
d=1

1− h2d

)
= ND −N

D∑
d=1

h2d

so combining we have

||b̂j||22 =

(
1− 1

N

)(∑
c∈C

`(j, c)

P (c)

D∑
d=1

h2d(c)

)
+
D

N
+O

(
1

N2

)
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which implies that

E

 χ2
j

D
(

1 +
χ2
j

N

)
 = (N − 1)

[∑
c∈C

`(j, c)

P (c)
×
∑D

d=1 h
2
d(c)

D

]
+ 1 +O

(
1

N

)
.

An interesting consequence of this definition of heritability enrichment is that it is invariant
to the combinations of dimensions that each annotation affects – all that matters is the average
heritability of each dimension. As a concrete example, consider the following two models. In
the first model, the annotations are meaningless and variants in each annotation have the same
distribution of effects on the trait. In the second model, the SNPs in each annotation affect only a
single dimension of the trait, and each annotation affects a different dimension of the trait, but the
heritability of each dimension is the same. Under both of these models, the average heritability
across dimensions of the trait is the same for each annotation, and so there is no enrichment of
heritability in any annotation in either model.

1.2 Traits with correlated dimensions
In the above, we assumed that Y was normalized and rotated such that YTY = NID. If Y is not
normalized, we can perform the thin singular value decomposition of Y = USVT . Then, letting
Ỹ :=

√
NU we have ỸT Ỹ = NID as required. We can then rewrite Equation 1 by noting that

Ỹ =
√
NYVS−1:

Ỹ = XB̃ + Ẽ,

where B̃ =
√
NBVS−1 and Ẽ =

√
NEVS−1. The proof of Theorem 1 requires us to compute

E[B̃B̃T ] and E[ẼẼT ]. Below, we will write ΣP = 1
N

YTY for the phenotypic variation and
ΣG = PVar(Bj) for the total genetic variance.

Beginning with E[B̃B̃T ] we have

E[B̃B̃T ] = NE[BVS−2VTBT ]

= trace

(
Var(Bj)

(
1

N
YTY

)−1)
IP

=
1

P
trace

(
ΣGΣ−1P

)
IP .

A similar calculation results in

E[ẼẼT ] = trace
(
Var(Ei)Σ

−1
P

)
IN .

Yet, under our additive model the phenotypic variation must equal the variance from the noise
plus the genetic variance, and so we must have Var(Ei) = ΣP − ΣG, ignoring terms of O(1/N).
Therefore,

E[ẼẼT ] = IN − trace
(
ΣGΣ−1P

)
IN .

Using these results in the proofs of Theorems 1 results in the following generalization.
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Corollary. In the notation of Section 1.2, for general 1
N

YTY = ΣP , we have

E

 χ2
j

1 +
χ2
j

N

 =
N − 1

P
trace

(
ΣGΣ−1P

)
`j +D +O

(
1

N

)
.

If we allow the distribution of effect sizes to change across genomic annotations like in Sec-
tion 1.1, then we can consider the total contribution to genetic covariance of each annotation:

Σc
G := P (c)Var (Bj) ,

for any SNP j ∈ c, and we can let ΣG :=
∑

c∈C Σc
G denote the total contribution to genetic

covariance across all SNPs. Following similar reasoning as above about E
[
B̃B̃T

]
and E

[
ẼẼT

]
we see that we can simply replace

∑D
d=1 h

2
d(c) by trace

(
Σc
GΣ−1P

)
in the proof of Theorem 2 to

obtain the following generalization.

Corollary. In the notation of Section 1.2, for general 1
N

YTY = ΣP and allowing the distribution
of effect sizes to change across a set of annotations, C, that partitions the SNPs, we have

E

 χ2
j

1 +
χ2
j

N

 = (N − 1)

[∑
c∈C

trace
(
Σc
GΣ−1P

) `(j, c)
P (c)

]
+D +O

(
1

N

)
.

1.3 Using p-values from tests based on other test statistics
In previous work on multivariate traits [3] an alternative test statistic to Equation 2 was used. In
particular, testing was performed using Wilks’ lambda which is the default option for canonical
correlation analysis-based multivariate regression in many software packages [6]. Here, we show
that the p-values generated by tests based on Wilks’ lambda are approximately equivalent to those
based on the test statistic in Equation 2. This section is largely a recap of classical results [5, 2].

Wilks’ lambda arises in the general multivariate regression setting defined by Equation 1. In
this setting we are interested in testing whether any of several null hypotheses is false. This is often
referred to as an omnibus test. In particular, consider the following null hypothesis

H0 : CBA = D

for matrices C ∈ RQ×P , A ∈ RD×D and D ∈ RQ×D. We may then define the following matrices

Se := AT (Y −XB̂)T (Y −XB̂)A

Sh := (CB̂A−D)T (C(XTX)−1CT )−1(CB̂A−D).

Finally, letting λ1, . . . , λK be the non-zero eigenvalues of S−1e Sh, Wilks’ lambda is defined as

ΛWilks’ :=
K∏
k=1

1

1 + λk
.
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To specialize to the present case, we note that for GWAS, the tests are actually run marginally,
so the model is

Y = xjb
T
j + E,

and we test against the null hypothesis

H0 : bTj = 01×D.

That means that in the above omnibus hypothesis setting we have that C = 1, A = ID, and
D = 01×D. As a result,

Se = (Y − xjb̂
T
j )T (Y − xjb̂

T
j )

Sh = b̂j(x
T
j xj)

−1b̂Tj = N b̂jb̂
T
j .

and so
S−1e Sh = N

[
(Y − xjb̂

T
j )T (Y − xjb̂

T
j )
]−1

b̂jb̂
T
j .

This matrix is the product of a full rank matrix and a matrix with rank one, so it is rank one and has
only one eigenvalue. Because the trace of a matrix is the sum of its eigenvalues, the sole eigenvalue
of this matrix must be the trace. We may then use the cyclic property of trace to find

trace(S−1e Sh) = N trace
([

(Y − xjb̂
T
j )T (Y − xjb̂

T
j )
]−1

b̂jb̂
T
j

)
= N trace

(
b̂Tj

[
(Y − xjb̂

T
j )T (Y − xjb̂

T
j )
]−1

b̂j

)
= N b̂Tj

[
(Y − xjb̂

T
j )T (Y − xjb̂

T
j )
]−1

b̂j.

Therefore Wilks’ lambda in this case is

ΛWilks’ =
1

1 +N b̂Tj

[
(Y − xjb̂Tj )T (Y − xjb̂Tj )

]−1
b̂j

,

and
1− ΛWilks’

ΛWilks’
= N b̂Tj

[
(Y − xjb̂

T
j )T (Y − xjb̂

T
j )
]−1

b̂j.

A classical result says that when Q = 1, as in our case,

1− ΛWilks’

ΛWilks’

N −D + 1

D

is F distributed withD andN−D+1 degrees of freedom (e.g., Equation 8.19 in [2]). This implies
that in the limit of large N ,

(N −D + 1)
1− ΛWilks’

ΛWilks’
∼ χ2 with D degrees of freedom

Therefore, compared to the statistic used in Theorem 1, χ2
j , we have

(N −D + 1)
1− ΛWilks’

ΛWilks’
=

(
1− D

N
+

1

N

)
χ2
j ≈ χ2

j ,

and p-values in both tests are computed under asymptotically equivalent distributions.
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2 A multivariate generalization of heritability
Above we used 1

D
trace

(
ΣGΣ−1P

)
as a D-dimensional generalization of heritability for a genetic

covariance matrix ΣG and a phenotypic covariance matrix ΣP . There are many other sensible
generalizations that also reduce to the univariate definition of heritability, for instance based on the
Frobenius norm || · ||F or any operator norm || · ||op. A few examples include:

• ||ΣG||F
||ΣP ||F

• trace(ΣG)

trace(ΣP )

•
||ΣG||op

||ΣP ||op

• ||ΣGΣ−1P ||F
• ||ΣGΣ−1P ||op

• ||Σ−1/2P ΣGΣ
−1/2
P ||F

• ||Σ−1/2P ΣGΣ
−1/2
P ||op

. . .

Indeed, because all univariate norms are proportional, for any matrix norm || · ||M , any ratio of the
form ||ΣG||M

||ΣP ||M
, or any properly scaled matrix norm applied to ΣGΣ−1P or Σ

−1/2
P ΣGΣ

−1/2
P will reduce

to the univariate definition of heritability. Note that for positive semi-definite matrices, trace(·) is
equal to the nuclear norm, and so trace(·) is also a norm on the relevant space. There are, of course,
many other sensible ways to generalize heritability.

To provide some justification for our particular generalization, we list four simple properties
that any generalization of heritability should possess and show that our generalization is the only
measure that satisfies these four properties. We list these properties informally, as well as in formal
mathematical statements about a heritability function, h2(·, ·) that maps a genetic covariance matrix
ΣG and a phenotypic covariance matrix ΣP to a scalar. Throughout when we say for all ΣG

and ΣP , we implicitly mean only such pairs that satisfy the constraints required under a non-
degenrate additive genetic model: 0 � ΣG � ΣP and 0 ≺ ΣP . These constraints simply mean
that the phenotypic variance is at least as great as the genetic variance for any combination of the
dimensions of the trait, and the phenotypic variance of any combination of dimensions of the trait
is strictly positive.

1. Invariant to units of measurement

Any measure of heritability should be independent of the units with which the dimensions
of the trait are measured. Mathematically, h2(ΣG,ΣP ) = h2(MΣGM,MΣPM) for any
diagonal matrix M � 0, and for any ΣP , and ΣG.

2. Coordinate-free

The way we choose to delineate the trait into different dimensions is arbitrary, especially
with respect to genetic and phenotypic variance. Genetic variants or environmental effects
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may act to alter specific combinations of dimensions as opposed to single dimensions. As
such, the particular coordinate system we use to represent the trait should not impact our
measure of heritability. Mathematically, h2(ΣG,ΣP ) = h2(UΣGUT ,UΣPUT ) for any
orthogonal matrix U.

3. Linear in ΣG

If the variance attributable to genetics doubles, we would want the heritability to double.
Similarly, the heritability of the trait attributable to two sets of independent variants should
be the sum of the heritability attributed to each set.. That is, h2(cΣG,ΣP ) = ch2(ΣG,ΣP )

and h2(Σ(1)
G +Σ

(2)
G ,ΣP ) = h2(Σ

(1)
G ,ΣP )+h2(Σ

(2)
G ,ΣP ), for any scalar c, and any ΣG, Σ

(1)
G ,

Σ
(2)
G , and ΣP such that the resulting matrices still obey the positive semidefinite ordering

listed above.

4. Maximized when ΣG = ΣP

When the genetic variance matches the phenotypic variance along all combinations of di-
mensions, the heritability should be 1. That is h2(Σ,Σ) = 1 for any Σ.

Theorem 3. Let h2 be a function that maps a pair of matrices, ΣG, and ΣP such that 0 � ΣG �
ΣP and 0 ≺ ΣP to a scalar. Furthermore, assume that h2 satisfies properties 1-4 listed above.
Then,

h2(ΣG,ΣP ) =
1

D
trace

(
ΣGΣ−1P

)
.

Proof. To begin, we can use the spectral decomposition ΣP = UPΛPUT
P and properties 1 and 2

to obtain:

h2(ΣG,ΣP ) = h2(ΣG,UPΛPUT
P ) (spectral decomposition)

= h2(UT
PΣGUP ,ΛP ) (Property 2)

= h2(Λ
−1/2
P UT

PΣGUPΛ
−1/2
P , ID) (Property 1)

= h2(Σ
−1/2
P ΣGΣ

−1/2
P , ID) (spectral decomposition)

Therefore, h2(ΣG,ΣP ) is equivalent to a function h̃2(Σ−1/2P ΣGΣ
−1/2
P ), that operates on a single

matrix 0 � Σ
−1/2
P ΣGΣ

−1/2
P � ID. It is clear that h̃2 is linear in its argument by applying Property

3 to h2:

h̃2(M1 + M2) = h2(M1 + M2, ID) = h2(M1, ID) + h2(M2, ID) = h̃2(M1) + h̃2(M2)

and
h̃2(cM) = h2(cM, ID) = ch2(M, ID) = ch̃2(M).

Furthermore, by Property 2 h̃2 is also invariant to multiplication of its argument on the left and
right by any orthogonal matrix, U, and its inverse:

h̃2(UMUT ) = h2(UMUT ,UIDUT ) = h2(M, ID) = h̃2(M)

Hence, we may diagonalize the argument of h̃2 via its spectral decomposition, M = UMΛMUT
M :

h̃2(M) = h̃2(UMΛMUT
M) = h̃2(ΛM),
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but ΛM only contains the eigenvalues of M, so h̃2 is a function of only the eigenvalues of its ar-
gument. Furthermore, permutation matrices are orthogonal, and so by left and right multiplying
the argument by a permutation matrix and its inverse, we see that h̃2 is unchanged. Therefore,
h̃2 is a linear, permutation-invariant function of the eigenvalues of its argument. The only func-
tions that satisfies these properties are proportional to trace(·). This implies that h2(ΣG,ΣP ) =

Ctrace(Σ
−1/2
P ΣGΣ

−1/2
P ) for some constant of proportionalityC. We may rearrange this to h2(ΣG,ΣP ) =

Ctrace(ΣGΣ−1P ) by the cyclic property of the trace. Finally, Property 4 shows that the constant of
proportionality must be 1/D:

1 = h2(Σ,Σ) = Ctrace(ΣΣ−1) = Ctrace(ID) = CD =⇒ C =
1

D
.

Therefore, h2(ΣG,ΣP ) can only be 1
D

trace
(
ΣGΣ−1P

)
.
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